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Abstract. Exact solutions are obtained for the diffusion through single- and double-square
potentials, by using the Laplace transform method. We compare transmission of a classical
particle through one barrier of given length and through two barriers with a well between them
of the same overall length. The influence of the barriers’ heights and widths as well as of the
distances to the reflecting walls is studied in detail. The results obtained are used to estimate
the limits of applicability of the Kramers rate theory.

1. Introduction

The transition between simultaneously stable states across a barrier is an old problem of great
importance both in quantum and classical mechanics. The tunnelling of quantum particles
through a potential barrier is a clearly understood quantum-mechanical problem [1]. One of
the peculiarities of this problem is a comparison of the transition through a double barrier
(figure 1(b)) and a single barrier (figure 1(a)). It turns out that the transmission coefficient
for the incident particle can reach nearly unity for a double barrier even through each of the
barriers has a low transparency. This resonance phenomenon takes place when the energy
of an incident particle is close to one of the eigenstates of the potential well that divides
the two barriers [1].

A classical particle with energy smaller then the barrier height is able to cross the
barrier only in the presence of fluctuations. Such fluctuation-induced transitions are of great
importance in physics, chemistry and biology [2]. The most often used approximation for
the overdamped motion is due to Kramers [3]. A detailed survey of the fifty years of
developments of this problem can be found in recent review articles [4, 5].

The Fokker–Planck equation for the overdamped motion can be solved exactly for the
steady state and for some simple forms of potential also for the time-dependent case. The
potentials shown in figure 1 belong to the class of simple potentials when the exact solution
for the full dynamic problem can be obtained by using the Laplace transform method or by
transferring the Fokker–Planck equation to the Schr

..
odinger form [6]. We use the former

method, focusing our attention, in particular, on a comparison between the potentials shown
in figures 1(a) and (b), and investigate whether the existence of a potential well is able,
as in the quantum-mechanical case, to assist the transmission over the barrier. We also try
to extract all the possible information from the exact solution, including the validity of the
Kramers rate theory and the dependence of the transmission on the barrier’s heights and on
the distance to the reflecting walls.

0305-4470/96/081567+14$19.50c© 1996 IOP Publishing Ltd 1567
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Figure 1. Different forms of square-well potentials: (a) one barrier of width 2a and heightU
with reflecting boundaries atx = ±L; (b) two barriers of widtha − b and heightU with a well
of width 2b between the barriers and reflecting boundaries atx = ±L; (c) the same as (a) with
no boundaries; (d) the same as (b) with no boundaries.

2. Basic equations

The Fokker–Planck equation for the probability density functionP(x, t) for the positionx

of a diffusing particle at timet is

∂P

∂t
= ∂

∂x

[
1

kT

dU

dx
P + ∂P

∂x

]
≡ −∂J

∂x
(1)

whereJ is the probability current, and the diffusion coefficient is chosen equal to unity so
that the time is measured in units of length squared. For the potentials shown in figure 1
dU/dx = 0, and (1) reduces to the simple diffusion equation. On performing the Laplace
transform

P̂ (x, s) =
∫ ∞

0
P(x, t)e−st dt (2)

one can rewrite (1) in the following form:

sP̂ − P(x, 0) = ∂2P̂

∂x2
. (3)
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For simplicity we assume that initially a particle is located at the very left end of the
barrier

P(x, t = 0) = δ(x + a) (4)

although it is physically obvious that all qualitative results will not depend on the precise
initial position of the particle in the interval(−L, −a).

Substituting (4) into (3) leads to the following equation:

∂2P̂

∂x2
+ δ(x + a) = r2P̂ r = √

s . (5)

One can solve (5) in the three regions of interest for the potential shown in figure 1(a)
and five regions for that in figure 1(b). In the former case the solutions of (5) are given by

P̂ = C1 erx + C2 e−rx −L < x < −a

P̂ = C3 erx + C4 e−rx −a < x < a

P̂ = C5 erx + C6 e−rx a < x < L

(6)

and similar formulae can be written for the five regions in figure 1(b).
In both cases we assume reflecting boundary conditions at boundariesx = L and

x = −L which means that the probability current vanishes at these points,J (L, s) =
J (−L, s) = 0, i.e.

C1 e−rL − C2 erL = 0
C5 erL − C6 e−rL = 0 .

(7)

The coefficientsCi are determined by the continuity ofP andJ at the pointsx = ±a

and x = ±b. Some caution has to be used due to jumps of potential at these points [6].
Continuity of the probability currentJ which according to equation (1) can be written as
J = −e−U/kT ∂

∂x

[
eU/kT P̂

]
means that at pointsz of the (finite) jumps of potentials

eU(z+0)/kT P̂ (z + 0, s) − eU(z−0)/kT P̂ (z − 0, s) = 0
∂P̂ (z + 0, s)

∂x
− ∂P̂ (z − 0, s)

∂x
= 0 .

(8)

The latter condition has an additional term (−1) at the pointx = −a which comes from
the integration ofδ(x + a) in (5) nearx = −a.

Therefore, for the potential shown in figure 1(a) the matching conditions (8) for the
distribution functions (6) take the form:

C1 e−ra + C2era = (C3 e−ra + C4 era) eU0

C1 e−ra − C2 era − 1

r
= C3 e−ra − C4 era

(C3 era + C4 e−ra)eU0 = C5 era + C6 e−ra

C3 era − C4 e−ra = C5 era − C6 e−ra

(9)

and the analogous conditions can be written for the double barrier, figure 1(b). Here and
later on we use the notationU0 = U/kT .

The six equations (7), (9) determine the coefficientsC1, . . . , C6 and the analogous
equations for two-barrier potential determineC1, . . . , C10. Although we have analytical
solutions for all coefficientsCi for our purposes we need only the coefficientC5. Indeed,
starting from the pointx = −a at t = 0 (see equation (4)) the Laplace transform of the
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probability W(t) of finding a particle in the region[a, L] after crossing the barrier(s) is
given by

Ŵ (s) =
∫ L

a

P̂ (x, s) dx = 2C5 erL

r
sinh(r(L − a)) (10)

where the second of conditions (7) has been taken into account. After quite cumbersome
calculations one can solve exactly the system of equations (7), (9). After substitutingC5 in
(10) one gets

Ŵ (s) = eU0 sinh(2r(L − a))

4r2
{cosh(r(L − a)) cosh(ra) + eU0 sinh(r(L − a)) sinh(ra)}−1

× {
cosh(r(L − a)) sinh(ra) + eU0 sinh(r(L − a)) cosh(ra)

}−1
. (11)

Analogous, even more tedious, algebra gives the solution of a system of ten equations for
the double-barrier potential:

Ŵ (s) = e2U0 sinh(2r(L − a))

4r2FG
(12)

where the expressionsF andG are of the form{
F

G

}
= [

cosh(r(L−a)) sinh(r(a−b)) + eU0 sinh(r(L−a)) cosh(r(a−b))
] {

cosh(rb)

sinh(rb)

}
+eU0 [cosh(r(L−a)) cosh(r(a−b))

+eU0 sinh(r(L−a)) sinh(r(a−b))
]{sinh(rb)

cosh(rb)

}
. (13)

It is obvious that in the limitb → 0 the potential shown in figure 1(b) reduces to that
in figure 1(a), and accordingly, (12) reduces to (11).

Two types of poles exist in (11) and (12):r = 0 which defines the asymptotic behaviour
as t → ∞, and those which come from the vanishing ofA andB. One can easily find the
asymptotic behaviour for one-barrier potentials withL − a = na, namely

W(t → ∞) = eU0

2
[
eU0 + 1/n

] . (14)

Since the inverse Laplace transform of (11) and (12) is not trivial we consider in the
next section the special casesn = 1 andn = 1

2 in (14) which simplify the inverse Laplace
transform.

3. Some exact results

The simplest choice of the potential shown in figure 1(a) is

L = 2a . (15)

Then the inverse Laplace transform of (11) has the following form:

W(t) = 1

2π i

eU0

2(1 + eU0)

∫
C

est ds

s
[
cosh2(ar) + eU0 sinh2(ar)

] (16)

whereC is the integration contour of the inverse Laplace transform,s = Re(s) + iσ with
fixed Re(s) > 0 and the integral overσ is over(−∞, ∞).

The poles of the integrand in (16) ares = 0 with residue 2π i and the values

s = − (α + 2πn)2

a2
r = i

α + 2πn

a
n = 1, 2, 3 . . . (17)
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whereα is the root of the following equation:

tan(
α

2
) = e−U0/2 (18)

To find the residues at these poles one gets

s
d

ds

[
cosh2(ar) + eU0 sinh2(ar)

]
s=− (α+2πn)2

a2
= r

2

d

dr

[
cosh2(ar) + eU0 sinh2(ar)

]
r=i α+2πn

a

= (α + 2πn)eU0/2 . (19)

Equation (18) has been used in the last part of (19).
Hence, the probabilityW(t) to be in the region(a, L) after crossing the barrier is

W(t) = eU0

2(1 + eU0)
− eU0/2

1 + eU0

∞∑
n=−∞

exp
(− (α+2πn)2

a2 t
)

α + 2πn
. (20)

The second term in (20) coincides with the result of calculation in [6] performed by
transition from the Fokker–Planck equation to the Schr

..
odinger equation while the first term

was written in [6] as1
2 which coincides with (20) only for high barriersU0 � 1.

The special choice (15) of the one-barrier potential leads to the simple result (20) since
only one type of pole (17) exists in addition to the always existing poles = 0 which defines
the asymptotic behaviour ofW(t) as t → ∞.

We bring now results of calculations similar to (17)–(19) for a different distance of the
barrier from the reflecting wall,L = 3

2a, where there appear two different types of poles.
For

L = 3
2a (21)

one gets

W(t) = eU0

2(2 + eU0)
+ eU0

1 + eU0

[
1

(e2U0 + eU0)1/2

∞∑
n=−∞

exp
(− (α1+2πn)2

a2 t
)

α1 + 2πn

− 1

(1 + 2eU0)1/2

∞∑
n=−∞

exp
(− (α2+2πn)2

a2 t
)

α2 + 2πn

]
(22)

where

cos(α1) = − 1

1 + eU0
cos(α2) = eU0

1 + eU0
. (23)

It is instructive to compare expressions (22) and (23) for the one-barrier potential shown
in figure 1(a) with the appropriate two-barrier potential (figure 1(b)) obtained from (21) by
adding an additional well at−b < x < b, namely

L = 3
2a b = 1

2a . (24)

We now have to consider the poles in (13) with their residues, and then perform the
inverse Laplace transform of (12). After calculations similar to (17)–(19) one obtains

W(t) = eU0

2(1 + eU0)
+ eU0

1 + eU0

[
1

(1 + 2eU0)1/2

∞∑
n=−∞

exp
(− (α1+2πn)2

a2 t
)

α1 + 2πn

− eU0/2

(1 + eU0 + e2U0)1/2

∞∑
n=−∞

exp
(− (α2+2πn)2

a2 t
)

α2 + 2πn

]
(25)
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where

cos(α1) = e2U0 − 2eU0 − 1

(1 + eU0)2
cos(α2) = e2U0 + 1

(1 + eU0)2
. (26)

For brevity we omit an additional exactly solvable caseL = 4
3a, b = 2

3a.
The first terms in the right-hand sides of all expressions forW(t) written above describe

the asymptotic(t → ∞) probabilities established after many reflections from the walls. One
can easily show that the asymptotic probabilities to be in a given interval are proportional
to the length of this interval multiplied by e−U0 whereU0 is the potential barrier on this
interval.

Hence, for the one-barrier potential shown in figure 1(a) the whole probability will be
proportional to 2(L − a) + 2a e−U0 and

W(t → ∞) = L − a

2(L − a) + 2a e−U0
. (27)

Substituting in (27)L = 2a andL = 3
2a one obtains the asymptotic terms in (20) and

(22), respectively.
Analogously, for the two-barrier potential

W(t → ∞) = L − a

2(L − a) + 2b + 2(a − b) e−U0
(28)

which reduces to the asymptotic term in equation (25) forL = 3
2a andb = 1

2a.
One can also check that in the opposite limit case,t = 0, all the above equations for

W(t) are reduced toW(t = 0) = 0. To see this one has to use the summation formulae [7]:
∞∑

n=−∞

1

2n + α
= π

2
cot

(
πα

2

)
. (29)

To answer the question of whether the existence of a well inside a given barrier assists
or inhibits the transmission through the barrier one has to compare (22) and (25). In all
cases considered (L = 2a, b = 1

2a; L = 4
3a, b = 2

3a; L = 3
2a, b = 1

2a) we calculatedW(t)

and found that for all distances from the barrier to the wall,L = 2a, L = 3
2a andL = 4

3a,
the introduction of a well inhibits the transmission, i.e. it is easier to cross one barrier than
two. However, the more detailed analysis in the subsequent sections will show that the last
statement is not always correct.

4. Comparison with Kramers’ escape rate

The exact results obtained in the last section can be compared with the well known Kramers
formula for the rate of chemical reactions [3]. The rate of a thermally activated process is
proportional to the Arrhenius factor e−U/kT , whereU is the height of a potential barrier.
Kramers considered a Brownian particle moving in one dimension in an external fieldU(x).
He showed [3] that for high barriers,U � kT , when the rate of escape through the barrier
is very small, this rate is defined mainly by the curvatures of the potential near its minimum
and maximum. The latter assumption allows one to find the pre-exponential factor in the
Arrhenius law, and to describe the jump rate across a barrier by a single rate exponent.

Different authors have checked the limits of applicability of the Kramers formula using
the eigenvalues of a few known exact solutions of the Fokker–Planck equation [8–10],
the concept of mean-free-passage time [11] or the Laplace transform method [12] (see the
review paper [4]).
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Let us first find the Kramers formula for the one-barrier potential shown in figure 1(a),
where for brevity we denote the lengths of the three characteristic intervals from the left to
the right byA1, A2 andA3, and the points at the ends of the barrier’s top by 1 and 2.

As follows from (1) one can rewrite the probability currentJ in the form

J = −e−U0
∂

∂x

[
eU0P(x, t)

]
. (30)

The main assumption in the Kramers theory of rates is the smallness of the time changes
of the probability distribution functionP(x, t) and the probability currentJ which allows
one to considerJ for this quasi-stationary state as independent ofx. Using the latter
assumption one can integrate (30) with respect tox along the top of the barrier between
points 1 and 2 which gives

P2 − P1 = J · A2 . (31)

The probability to be in regionsA1 and A3 can be written asA1P1eU0 and A3P2eU0,
respectively, where we used the jump condition (8) forP . SinceU0 � 1 one can neglect
the particles sitting on the top of the barrier in the normalization condition which, therefore,
will have the following form:

A1P1 eU0 + A3P2 eU0 = 1 . (32)

Combining equations (31) and (32) one gets

1

J

[
A1P1 eU0 − A1

A1 + A3

]
= A1A2A3

A1 + A3
eU0 ≡ 1

kr,1
. (33)

The expression in the brackets on the left-hand side of this formula defines the excess
probability (above the equilibrium one) to find a particle in the regionA1. However, in the
framework of the Kramers theory this probability times the ratekr,1 defines the probability
currentJ . Finally, coming back to our original notation,A1 = A3 = L − a andA2 = 2a,
one finds that

kr,1 = e−U0

(L − a)a
. (34)

The Kramers ratekr,2 for the two-barriers potential shown in figure 1(b) can be found
from analogous considerations. It turns out that one again obtains equation (33) with
A1 = A3 = L − a andA2 = 2(a − b), i.e.

kr,2 = e−U0

(L − a)(a − b)
. (35)

Hence, in the Kramers approximation the rate is determined by the width of the barriers
2(a − b) rather than by that of the well between the two barriers. This latter result is, in
fact, confirmed by the form of brackets in (33) which contains only the parameters of the
region adjoining the reflecting walls.

A comparison of (34) and (35) with the exact results obtained in the previous section
and with the general Laplace transform results of section 2 allows one to set a limit of
applicability of Kramers rate theory. First of all, one can find the smallest eigenvalues for
all cases considered in section 3. To this end one has to consider then = 0 terms in the
sums overn in (20), (22) and (25) which giveα2/4a2, α2

2/4a2 and α2
2/a

2, respectively.
Afterwards, one finds the series in e−U0 in the transcendental equations (18), (23) and (26)
for theseα. The results of these calculations up to O(e−2U0) are shown in the second column
of table 1, and these should be compared with the first column which contains the Kramers
formulae (34) and (35) for the appropriate values ofL, a andb. The comparison of columns
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I and II shows that for all the barriers considered the Kramers rates coincide with the main
term in the expansion of the (exact) smallest eigenvalues while the next terms in column II
provide, for high barriers,U0 � 1, only small corrections to the Kramers results.

Since we have the exact formulae (11) and (12), (13) for the Laplace transform of the
probabilityW(t) to be in the region(a, L) after crossing the barrier, the possibility exists of
comparing the Kramers formulae (34) and (35) with the appropriate rates obtained from (11)
and (13) after expanding these equations in a small parameter e−U0. After some simple but
tedious calculations one gets

k = e−U0

(L − a)(a − b)

− (L − a + 4b)(L2 − 2aL + 2a2) − ab(3a + 2L) + b2(L + a − 3b)

(L − a)3(a − b)2
e−2U0

+ · · · . (36)

Needless to say, for appropriateL, a andb equation (36) gives the results of column 2 in
table 1. One can see, however, that for allL > a > b the second term remains smaller than
the first one which justifies the Kramers rate theory. In deriving (36) we have assumed that
the barriers are not too narrow, i.ea − b = O(1) � e−U0. Otherwise, the results would be
quite different. Fora − b = O(e−U0) the Arrhenius factor will disappear, and the whole
picture will be quite different from that of Kramers, which is not so surprising since in
Kramers’ theory only one small parameter, e−U0, exists.

Another form of a single-exponent expression different from the Kramers rate was noted
in [6]. The probabilitiesW(t) may be approximated by a single potential

Wa(t) = W(t = ∞)[1 − e−rt ] (37)

where the decay rater is determined from the integral condition of the equal area of the
exact expressionW(t) founded in section 3 andWa(t) defined by (37), i.e.∫ ∞

0
Wa(t) dt =

∫ ∞

0
W(t) dt . (38)

Integration overt in (38) can be performed in a straightforward manner while for
the calculation of sums overn on the right-hand side of these equations one can use the
following formula [7]:

∞∑
n=−∞

1

(α + 2πn)3
= 1

8
cot

(
α

2

) [
1 + cot2

(
α

2

)]
. (39)

Table 1. Comparison of the transition rates for one- and two-squared high barriers (U0 � 1) of
different lengths obtained by the exact solution (column I), from the Kramers theory (column II)
and by the ‘equal area’ rule (column III).

L a b No of barriers I II III

4
3a a 0 1 (3/a2) exp(−U0) (3/a2) exp(−U0) − (10/3a2) exp(−2U0) (3/a2) exp(−U0)
4
3a a 2

3a 2 (9/a2) exp(−U0) (9/a2) exp(−U0) − (24/a2) exp(−2U0) (27/5a2) exp(−U0)
3
2a a 0 1 (2/a2) exp(−U0) (2/a2) exp(−U0) − (5/3a exp(−2U0)) (2/a2) exp(−U0)
3
2a a 1

2a 2 (4/a2) exp(−U0) (4/a2) exp(−U0) − (20/3a2) exp(−2U0) (8/3a2) exp(−U0)

2a a 0 1 (1/a2) exp(−U0) (1/a2) exp(−U0) − (2/3a2) exp(−2U0) (1/a2) exp(−U0)

2a a 1
2a 2 (2/a2) exp(−U0) (2/a2) exp(−U0) − (11/3a2) exp(−2U0) (3/2a2) exp(−U0)
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The final step will be an expansion in e−U0 of all formulae of section 3 which define
α—the procedure already used in obtaining the second column of table 1. For all cases
considered the ratesr obtained from the ‘equal area’ rule are shown in the third column of
table 1. It turns out that these rates coincide with the exact result for the one-barrier but
are different for the two-barrier potential.

5. Asymptotic expansions for small and large time

As we have seen in section 3, the full dynamic solution can be found analytically only
for special relations between the characteristic lengths. However, one can estimate the
asymptotic behaviour with time based on the general formulae (11) and (12) for one and
two barriers, respectively.

Let us start with smallt , confining our attention mostly to a comparison between one
and two barriers. Assuming that the reflecting walls are comparatively far away so that
L − a > a − b, b one obtains in the leading order for one barrier

W(t) ≈ 2e−U0

(1 + e−U0)2
erfc

(
a√
t

)
≈ 2 e−U0

(1 + e−U0)2

√
t

πa
e−a2/t (40)

and for two barriers

W(t) ≈ 8 e−2U0

(1 + e−U0)4
erfc

(
a√
t

)
≈ 2

[
2e−U0

(1 + e−U0)2

]2 √
tπa e−a2/t (41)

where the asymptotic expression for erfc(z) has been used [7].
On comparing (40) and (41) one concludes that they become identical only forU0 = 0

as it should be. However, for both low(U0 � 1) and high(U0 � 1) barriers (41) is
always smaller than (40), i.e. at least at small times before the reflection from the walls
becomes important, it is easier to pass one barrier then two successive barriers. One notable
exception is the case of low(U0 � 1) and very narrow (a − b is much smaller thana)
barriers for which it can be shown that it is easier to pass two narrow barriers than one
wide barrier.

Let us now turn our attention to the asymptotics for larget . For t → ∞ the stationary
distribution for two barriers has the following form (as was shown in section 3):

W(t = ∞) = eU0(L − a)

2
[
eU0(L − a) + a + b(eU0 − 1)

] . (42)

As one can see from (42) conversion to the case of one barrier,b → 0, reduces (42)
to (27) and results in an increase of the probability to cross the barrier. The explanation of
this phenomenon is clear. Indeed, the stationary probability to be in the region(−b, b) is
higher in the two-barrier case (there is no barrier in this region), and, hence, the probability
to be in the region of interest(a, L) is smaller compared with the one-barrier potential.

The limit form of (42) becomes particularly simple when the height of the barriers is
very low, U0 ≈ 0, or they become very narrow,b → a. In both these cases

W(t = ∞) = L − a

2L
(43)

i.e. the probability to be in some interval is determined only by the length of this interval.
The probability to be on very high barriers is very small, and, therefore, forU0 → ∞

W(t = ∞) = L − a

2(L − a + b)
(44)
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i.e. it is again determined by the length of the interval.
The first correction terms to (42) are proportional tot−3/2. They are quite cumbersome,

and we bring here results only for the one-barrier potential:

W(t) |t→∞= W(t = ∞)

[
1 − La(L − a)(3eU0(L − a) − (L − 5a))

3π1/2(eU0(L − a) + a)
t−3/2

]
. (45)

Let us summarize the results obtained in this section. When two barriers are not very
low and very narrow it is easier to cross one barrier than two both for small and large
t (figure 2). The non-trivial behaviour which we discuss in detail in the next section is
observed for the intermediatet where it is easier to cross two barriers than one (figure 2),
i.e. there are two intersections,A andB, of W(t) for the one and two barrier potentials.

The results are different for low(U0 � 1) and very narrow (a −b is much smaller than
a) barriers. As shown in figure 3, for smallt , W(t) for two barriers is larger than that of
one barrier, and only one intersection pointC exists.

6. Influence of reflecting walls and barriers’ heights

From the asymptotic analysis for large and small times in the previous section one might
gather the impression that it is always easier to cross a one-barrier potential than that of two
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Figure 2. Time dependence of the probability
to find a particle in the interval (a, L) after
crossing one barrier (figure 1(a)): L = 100,
a = 3, b = 0 (full curve) and two barriers
(figure 1(b)): L = 100,a = 3, b = 0.1 (broken
curve).
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Figure 3. Time dependence of the probability
to find a particle in the interval (a, L) after
crossing low and very narrow barriers: one
barrier,L = 100, a = 3, b = 0, eU0 = 5 (full
curve); two barriers,L = 100,a = 3, b = 2.99,
eU0 = 5 (broken curve).
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barriers (except for the special case of very low and narrow barriers). However, physical
intuition contradicts such an impression. Indeed, it seems easier to cross two narrow barriers
(|a − b| small—it does not have to be especially low and extremely narrow) than one wide
barrier(−a, a) of the same height. In order to clarify this point let us consider the potential
without reflective walls or walls so far removed that a particle does not reach them even
for asymptotically larget (figures 1(c), (d)).

The general approach to the solution of one-dimensional diffusion in the potential field
shown in figures 1(c), (d) is very similar to the solution of the analogous problem depicted
in figures 1(a) and (b). The only difference is that instead of reflecting boundary conditions
(7) one now requires the finite value of the probability density function atx → ±∞ which,
in turn, results inC2 = C5 = 0 in (6), (7) and (9). We will not repeat the calculations
performed in section 3, but rather bring here, as an example, the exact result for the
probability W(t) to cross one barrier (figure 1(c)):

W(t) = 2eU0

(1 + eU0)2

∞∑
n=0

tanh2n

(
U0

2

)
erfc

(
a(2n + 1)√

t

)
. (46)

Analogous to calculations of the previous section one can consider the asymptotic
behaviour at larget for the two-barrier potential shown in figure 1(d). One gets for arbitrary
values ofa andb the probability to find a particle somewhere to the right of the barriers at
large t

W(t) = 1

2
− 1√

πt
[a cosh(U0) − b(cosh(U0) − 1)] . (47)

Note that the first correction terms are proportional tot−1/2 while for barriers with
reflecting walls the appropriate terms were proportional tot−3/2. Moreover, passing in (47)
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Figure 4. Characteristic times (in relative units) which define the intersections of two curves
for one and two barriers withL = 100, eU0 = 5 anda = 3 as a function of the half-width of
the well: (a) the large-time intersections (point A in figure 2); (b) the small-time intersections
(point B in figure 2).
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Figure 5. Characteristic times (in relative units) which define the intersections of two curves
for one and two barriers withL = 200, eU0 = 500 anda = 3 as a function of the half-width of
the well: (a) the large-time intersections (point A in figure 2); (b) the small-time intersections
(point B in figure 2).

to the case of one barrier,b → 0, one can see that, in contrast to the results of the previous
section, it is easier now to pass two barriers than one!

One can, however, imagine the following transition from the potential shown in
figure 1(b) to that of figure 1(d). If one assumes that both the thicknesses of the barriers,
|a − b|, and the distance between the barriers, 2b, in figure 1(b) are very small compared to
the distances to the reflecting wall, one obtains effectively the potential shown in figure 1(d)
(apart from in the limit oft → ∞). Hence, one can assume that for intermediate times
it will be easier to cross two narrow barriers than one barrier. The walls for the barriers
considered in section 3 were not far enough removed from the barriers. Therefore, we
performed numerical calculations for far removed reflecting walls (L = 200 andL = 100
for a = 3) using different heights of the potential barrier, eU0 = 5 and eU0 = 500. We
obtained the graphs shown in figures 4 and 5. In figures 4(a), (b) and 5(a), (b) one can see
two intersection points,A and B, as functions of the half-sizeb of the well between two
barriers. PointsA in figures 4(a) and 5(a) are related to larget , and, in fact, the right part
of these graphs already describes the pointsC in figure 3 for the narrow barriers,a−b < a.
The pointsB in figures 4(b) and 5(b) define the second intersection points in figure 2, and
they do not exist for narrow barriers in full agreement with figure 3.

Let us now consider the influence of the barrier heights on the transmission of a particle
through these barriers. The probability of transmission has to be a non-monotonic function
of the barrier height for large enough fixed times. In other words, for each given time there
are two barrier heights with equal probability to cross them while for some intermediate
height the transmission is maximal. This result is correct for both one and two barriers.
For U0 = 0 there is some probability to be in the region of interest(a, L) proportional
to the length of this region. For largerU0 there will be the smaller probability to find a
particle in the region of the barriers, and, therefore, the probability to be in(a, L) will be
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larger. Therefore the graphW(U0) grows linearly for smallU0. On the other hand for
very largeU0 the probability to cross the barrier is very small. Therefore, the graphW(U0)

must reach a maximum somewhere for the intermediate barrier heights. As an example,
we show in figure 6 a graph of (25) depicting the probabilityW(t) of finding a particle in
the region(a, L) after crossing the barrier(s) as a function of the barrier height, eU0 (in the
exponential scale) for given fixed timet = 100 for a typical caseL = 3

2a andb = 1
2a. One

can see from this figure that for both one and two barriersW(t) has a maximum for some
intermediate barrier height. The curves for one- and two-barrier potentials have a similar
form, although the transmission for one barrier is higher especially for high barrier(s) as
one would expect.
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Figure 6. ProbabilityW(t) of finding a particle in the region(a, L) after crossing the barrier(s)
as a function of the barrier height, eU0 (in the exponential scale) for given fixed timet = 100
and: (a) L = 3

2a, b = 0; (b) L = 3
2a, b = 1

2a.

7. Conclusions

We have performed a quite comprehensive analysis of one-dimensional motion in a very
simple field consisting of single- or double-square barrier potentials. Surprisingly enough,
the study of such a simple case allows one to obtain a few interesting results:

(i) Using the Laplace transform method we found the exact solutions for the probability
W(t) to be in the after-barrier(s) region when all characteristic lengths are ratios of simple
integers. The asymptotic solutions for large and smallt were found for arbitrary lengths.

(ii) We performed a comparison of transmission through one barrier of length 2a

(figure 1(a)—case one) and two barriers with a well between them of the same overall
length 2a (figure 1(b)—case two). It turns out that

(a) For unbounded motion (figure 1(c), (d)) the transmission is higher in case one for
small t and in case two for larget .

(b) For restricted motion between two reflected walls when the barriers are not too
narrow the transmission in case one is higher than in two both for large and smallt .
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However, for intermediate time it is easier to cross two barriers than one (figure 2). If
two barriers are very narrow and low then the situation becomes similar to the unbounded
motion (figure 1(c), (d)). Therefore, there are, in general, two intersection points between
curvesW(t) for cases one and two, and only one point for very narrow barriers (figures 4
and 5).

(iii) For each given timeW(t) for reflecting walls is a non-monotonic function of the
barrier heightU0, i.e. there are two barrier heights with equal probability to cross them,
while for some intermediate height the transmission is maximal (figure 6).

(iv) We compared our exact results with the Kramers rate theory. It turned out that for
high barriers the Kramers rates coincide with exact results in the leading order in e−U0, and
small corrections appear in the next order (table 1). As expected, the Kramers theory does
not work for very narrow barriers.
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